

Technical documentation Last changed on: 09.01.2018

Via Acquanera, 29 tel. 031.526.566 (r.a.) info@calpower.it 22100 COM0 fax 031.507.984 www.calpower.it

ESS Series

Single Channel 2 Quadrant High Voltage Module with Floating Ground

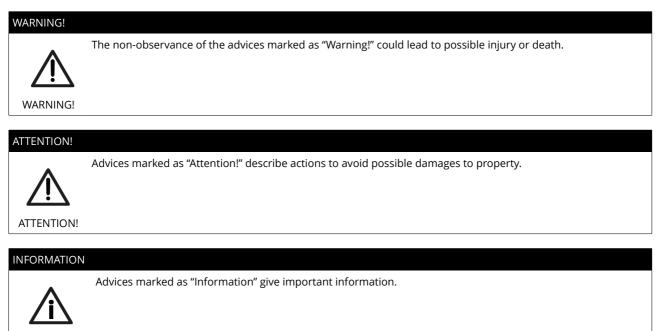
- 1 channel, 10 / 20 / 30 kV versions
- 2-quadrant capabilities, usable as unipolar current sink and source
- perfect for electron optical systems and capacitive loads
- low ripple and noise
- floating ground principle
- programmable parameters (delayed trip etc.)

Document history

Version	Date	Major changes
2.0	08.01.2018	Relayouted documentation, small fixes

Disclaimer / Copyright

Copyright © 2018 by iseg Spezialelektronik GmbH / Germany. All Rights Reserved.


This document is under copyright of iseg Spezialelektronik GmbH, Germany. It is forbidden to copy, extract parts, duplicate for any kind of publication without a written permission of iseg Spezialelektronik GmbH. This information has been prepared for assisting operation and maintenance personnel to enable efficient use.

The information in this manual is subject to change without notice. We take no responsibility for any mistake in the document. We reserve the right to make changes in the product design without reservation and without notification to the users. We decline all responsibility for damages and injuries caused by an improper use of the device.

Important security information

It is strongly recommended to read the operator's manual before operation. To avoid injury of users it is not allowed to open the unit. There are no parts which can be maintained by users inside of the unit. Opening the unit will void the warranty.

We decline all responsibility for damages and injuries caused by an improper use of the module. It is strongly recommended to read the operators manual before operation.

INFORMATION

Table of Contents

	Document history	2
	Document history Disclaimer / Copyright	2
	Important security information	2
1	General description	4
2	General description Technical data	5
3	Handling 3.1 Connection	6
	3.1 Connection	6
	3.2 Module status	6
	3.2 Module status3.3 Safety Loop	6
	3.4 Delayed Trip	7
	3.4.1 Operating principle	7
4	Front panel versions	8
5	Connectors and PIN assignments	8
6	Order guides Appendix	9
7	Appendix	10
	Warranty & service	10
	Manufacturer´s contact	

General description 1

WARNING!

High voltage power supplies of the device class generate an output voltage up to 30 kV. The disregard of this voltage condition can cause death, heavy injuries or material damage.

ATTENTION!

The devices must only be used in combination with iseg approved crates.

ATTENTION!

ESS modules are single channel high voltage power supplies in MMS-system (Eurocard format) with 2-quadrant capabilities. It can be used as unipolar current sink and source, which perfectly covers requirements of electron optical systems or capacitive loads.

The ESS series is built in floating ground principle to reduce voltage noise level. The configuration of output voltage and current can be customized on request. The module is made of high precision components such as 24 bit ADC and 16 bit DAC.

2 Technical data

SPECIFICATIONS	ESS
Polarity	Factory fixed, positive or negative
Floating principle	Common Floating Ground
Potential difference	56 V channel to Ground
Ripple and noise (f > 10 Hz)	< 0.6 – 2.5 V (see configurations)
Ripple and noise (f > 1 kHz)	< 0.5 – 2.2 V (see configurations)
Stablity	
Stability [ΔV_{out} vs. ΔV_{in}]	< 1 • 10 ⁻⁴ V _{nom}
Stability [ΔV_{out} vs. ΔR_{load}]	< 1 • 10 ⁻⁴ V _{nom}
Long term stability (1h warmup) 24h	< 1 • 10 ⁻⁴ V _{nom}
Temperature coefficient	< 100 ppm / K
Resolution - The resolution of measurable	le values depends on the settings of the sampling rate and the digital filter!
Resolution voltage setting	2 • 10 ⁻⁵ • V _{nom}
Resolution current setting	2 • 10 ⁻⁵ • I _{nom}
Resolution voltage measurement	1 • 10 ⁻⁵ • V _{nom}
Resolution current measurement	1 • 10 ⁻⁵ • I _{nom}
Measurement accuracy - The measurem	hent accuracy is guaranteed in the range $1\% \cdot V_{nom} < V_{out} < V_{nom}$ and for 1 year
Accuracy voltage measurement	± (0.2 % • V _{out} + 0.1 % • V _{nom})
Accuracy current measurement	± (0.2 % • I _{out} + 0.1 % • I _{nom})
Sample rates ADC (SPS)	5, 10, 25, 50, 60, 100, 500
Digital filter averages	1, 16, 64, 256, 512, 1024
Voltage ramp up / down	up to $0.2 \cdot V_{nom} / s \mid opt. up to 1 \cdot V_{nom} / s$
Digital interface	CAN (potential free)
Protection	Safety loop, overload and short circuit protected (there is only one complete discharge or arc per second allowed!)
HV connector	G31 S10 S20
System connector	96 PIN (MMS HV compatible, according to DIN 41612)
Safety loop connector	Lemo 2pole
Case	19" plug-in cassette
Dimensions – L/W/H	220 mm / 8HP / 6U
Operating temperature	0 – 50 °C
Storage temperature	-20 - 80 °C
Humidity	20 - 90 %, not condensing

Table 1: Technical data: Specifications

CONFIGURATIONS EDS SERIES

CONTROLAT											
Туре	V _{nom}	I _{nom}	Ch	••		Max. I_{in} (A) at 24V	HV connector Standard/opt.	Item code	Options		
				[f > 10 Hz]	[f > 1 kHz]						
ESS 10 100x	10 kV	4 mA	1	< 2.5	< 2.2	2.5	S10 (KINGS)	ES010100x405			
ESS 10 200x	20 kV	2 mA	1	< 0.6	< 0.5	2.5	S20 (KINGS)	ES010200x205			
ESS 10 300x	30 kV	1 mA	1	< 1	< 1	2	G31 (GES)	ES010300x105			

Table 2: Technical data: Configurations

OPTIONS	OPTION CODE	EXAMPLE	ITEM CODE HEX CODING
POLARITY	Positive: x = p , negative x = n	ESS 10 300 p	

Table 3: Technical data: Options and order information

3 Handling

3.1 Connection

The supply voltages and the CAN interface are connected to the module via a 96-pin connector on the rear side of the module. The physical address of the module, determined by the slot position in the crate, is also accessible via this connector Modules and crate controllers with different settings of bit rate do not work on the same CAN-Line.

INFORMATION

Note: For proper operation the module must be configured with the correct CAN bitrate, which meets the configuration of the crate controller, the module will be used with. The delivery condition is shown on the modules typeplate (side plate of the module).

INFORMATION Typically newer iseg crate controllers (CC24, CC23, CC238) are delivered with 250 kBits/s standard. Wiener M-POD Controller and older iseg hardware is set on 125 kBit/s standard bitrate.

3.2 Module status

The module status is displayed by two LEDs on the front panel

Green LED "OK" on	all channels have the status "OK"		
Green LED "OK" off	an error occured: safety loop is possibly not closed or the power supplies are out of tolerance or the threshold of V_{max} , I_{max} , I_{set} or I_{trip} (see function descriptions for details) has been exceeded		
	LED will be switched off until the error has been fixed and the corresponding status bit has been erased via software interface.		
Yellow LED on	one or more channels voltage on output is more than 56V		
Green LED blinking slow	prepares firmware update		
Green LED blinking fast	Firmware update is stored into flash, do not switch of power supply, crate etc.		

Table 4: Module status information

3.3 Safety Loop

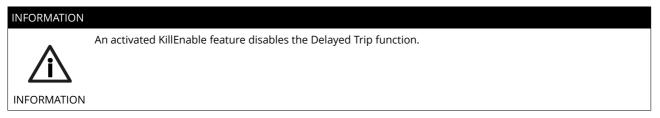
A safety loop can be implemented by the safety loop socket (SL) on the front panel. If the safety loop is active a high voltage generation in any channel is only possible if the safety loop is closed and an internal current in a range of 5 to 20 mA is driven through the loop. If the safety loop is opened during the operation the output voltages will be shut off without ramp and the corresponding bits in the ModuleStatus and ModuleEventStatus are cancelled (see "CAN_EDCP_Programmers-Guide.pdf"). After

closing the loop again the ModuleEventStatus has to be reset and the channels have to be switched ON. The loop connectors are potential free, the internal voltage drop is approx. 3 V. By factory setup the safety loop is not active (the corresponding bits are always set). The loop can be activated by removing the jumper "SL-disable" on the rear side of the module.

3.4 Delayed Trip

3.4.1 Operating principle

The function "*Delayed Trip*" provides a user-configurable, time-delayed response to an increased output current (I_{out}) higher than the set current (I_{set}). The response to this kind of event can be, for example, to ramp down the channel with the programmed ramp. A detailed description for the configuration can be found in the manual **CAN_EDCP_Programmers-Guide.pdf (see appendix).**


By a programmable timeout with one millisecond resolution, the trip can be delayed up to four seconds. If the measured current exceeds the set current the programmed timeout counter is decremented, keeping the output voltage. If the current returns to a value <lstep before timeout the counter will be reset. So this process can be restarted if the current rises again.

Note that the actual current is acquired approximately every 150 ms, which can lead to delays in the detection of an exceeded or again reduced current.

If the current at any time exceeds the hardware current limit the channel will be shut off without delay and ramp.

If the *Delayed Trip* function is activated the voltage ramp should be limited to 1 % of V_{nom} before. Higher values could trigger a trip by internal charge balancing during a ramp, even though the output current does not exceed the set value I_{set} .

If the connected load contains capacities or if I_{set} is very small, it might be necessary to further reduce the ramp speed. Alternatively, the *Delayed Trip* can be activated only after the completion of the ramp.

An active *KillEnable* function disables the *Delayed Trip* function. If *KillEnable* is active and a trip occurs, the channel is shut down without ramp at the fastest hardware response time (smaller than 1 ms). However, the actual discharge time strongly depends on the connected load.

4 Front panel versions

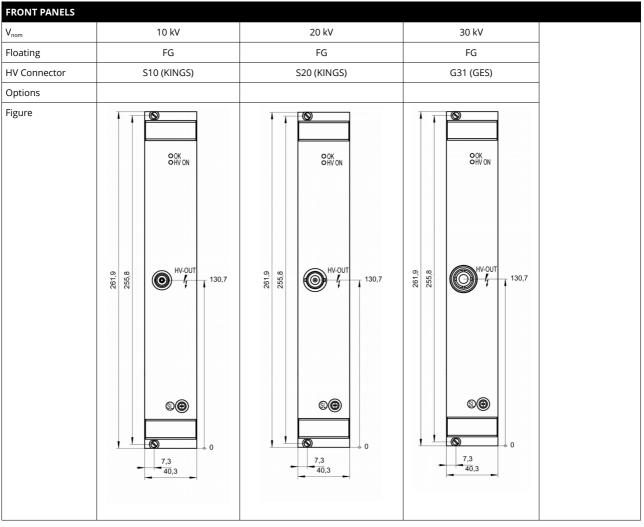


Table 6: Front panel versions

5 Connectors and PIN assignments

HV CONNE	CTOR ASSIGNMENTS			
Name	G31 (GES)	S10 (KINGS)	S20 (KINGS)	
Figure				
	SAFETY LOOP			
Name	Safety Loop socket			
Figure				

Table 7: Connector and pin assignments

CONNECTORS PART NUMBERS (manufacturer code / iseg accessory parts item code)								
POWER	SUPPLY SIDE	CA	BLE SIDE					
	G11 (GES)							
Socket	GES HB11	Connector	GES HS11					
	G21	(GES)						
Socket	GES HB21	Connector	GES HS21					
	G31	(GES)						
Socket	GES HB31	Connector	GES HS31					
	S10 (K	(INGS)						
Socket	Kings 1064-1	Connector	Kings 1065-1					
	S20 (K	(INGS)						
Socket	Socket Kings 1764-1 Connector Kings 1765-1							
	Safety Loop (LEMO)							
Socket	ERA.0S.302.CLL	Connector	FFA.0S.302.CLAC / Z592312					

Table 8: Connectors part number information

6 Order guides

CABLE ORDER GUID POWER SUPPLY SIDE CONNECTOR	CABLE CODE	CABLE DESCRIPTION	LOAD SIDE CONNECTOR	ORDER CODE LLL = length in m ^{(*}			
G11	02	Lemo HV-cable shielded 30kV (Lemo 130660)	open	G11_C02- <i>LLL</i>			
G21	02	Lemo HV-cable shielded 30kV (Lemo 130660)	open	G21_C02-LLL			
G31	02	Lemo HV-cable shielded 30kV (Lemo 130660)	open	G31_C02- <i>LLL</i>			
S10	04	HV cable shielded 30kV (HTV-30S-22-2)	open	S10_C04-LLL			
S20	02	Lemo HV-Kabel shielded 30kV (Lemo 130660)	open	S20_C02-LLL			
*) Length building examples: 10cm => 0.1, 2.5m => 2.5, 12m => 012, 999m => 999							

Table 9: Guideline for cable ordering

CONFIG	CONFIGURATION ORDER GUIDE (item code parts)										
ES	01	0	300	Р	105	000	02	00			
High Voltage	Numbers of channels	Class	V _{nom}	Polarity	I _{nom} (nA)	Option (hex)	HV-Connector	Customized Version			
		0 = standard	three significante digits *100V For Examle: 030 = 3000V	p = positive n = negative	two significante digits + number of zeros For Examle: 105 = 1mA	Sum of the hex codes (s. table 3) For Example: SLP = 002	06 = G11 GES 10kV 07 = G21 GES 20kV 08 = G31 GES 30kV 04 = S10 KINGS 05 = S20 KINGS	00 = none			

Table 10: Item code parts for different configurations

7 Appendix

For more information please use the following download links:

This document

http://download.iseg-hv.com/SYSTEMS/MMS/ESS/iseg_datasheet_ESS_en_2.0.pdf

CAN EDCP Programmers-Guide

http://download.iseg-hv.com/SYSTEMS/MMS/CAN_EDCP_Programmers-Guide.pdf

iseg Hardware Abstraction Layer

http://download.iseg-hv.com/SYSTEMS/MMS/isegHardwareAbstractionLayer.pdf

Warranty & service

This device is made with high care and quality assurance methods. The factory warranty is up to 36 months, starting from date of issue (invoice). Within this period a 5 years warranty extension can be ordered at additional charge. Please contact iseg sales department.

ATTENTION

Repair and maintenance may only be performed by trained and authorized personnel.

For repair please follow the RMA instructions on our website: www.iseg-hv.com/en/support/rma

8 Manufacturer's contact

iseg Spezialelektronik GmbH

Bautzner Landstr. 23 01454 Radeberg / OT Rossendorf GERMANY FON: +49 351 26996-0 | FAX: +49 351 26996-21 www.iseg-hv.com | info@iseg-hv.de | sales@iseg-hv.de

Via Acquanera, 29 tel. 031.526.566 (r.a.) info@calpower.it

22100 COM0 fax 031.507.984 www.calpower.it