

Catalog Electrochemistry instruments.

BioLogic

- Tel

As one of the world's foremost designers and manufacturers of high-performance electrochemical measurement instruments, BioLogic has forged its place as a leader in its field.

A comprehensive product portfolio covers cutting-edge products and accessories across every possible area of electrochemistry including battery, fuel cell/electrolyzer and material testing.

And a culture of innovation, continuous improvement and a commitment to customer satisfaction helps BioLogic continue to develop high-performance products that meet the needs of industry and science.

ACCUEIL

Our close proximity with both academic and industrial users helps us understand our clients' needs and develop solutions that truly make a difference - through a marriage of cutting-edge, reliable, high-performance hardware and innovative, user-friendly software.

Our highly qualified support engineers will first work closely with you to fully understand your project and your needs.

Only then will we start to develop a modular, user-friendly, high-performance measurement solution; one supported by a global technical support network.

So, wherever you are and whatever your field of electrochemistry, BioLogic can provide you with the measurement solution you need to take your research to the next level.

Shaping the future Together.

A unique and comprehensive range of products.

EIS contour plot of SP-300 with standard cable (1.75 m)*

Electrochemical Impedance Spectroscopy

A leader in Electrochemical Impedance Spectroscopy (EIS) technologies, BioLogic strives to place EIS within every researcher's reach, by making it available on all of its instruments.

Integrated EIS makes the transition between AC and DC techniques smooth and flawless. Control techniques on AC sine waves can be superimposed on a DC potential or a DC current value. Additional techniques are also available that impose the sine wave on a varied potential (SPEIS, also known as Mott Schottky technique) or a current (SGEIS) values.

Finally, sequenceable EIS techniques can be applied to different defined conditions during the frequency sweep. Accuracy is given by the error observed on the phase of impedance module to magnitude. Most of our potentiostats come with a specification of 1%, 1° accuracy below 500 kHz. With the SP-300 potentiostat providing the highest performance reading 0.3%,0.3°.

Modeling

BioLogic software offers ZFit, a modeling tool for equivalent circuit fitting. Fourteen elements and two minimization algorithms (DownHill Simplex and Levenberg-Marguardt) are available to analyze impedance data.

*BioLogic records contour plot data using standard 1.75 m cables as they are more representative of everyday use (even better results are achievable with shorter cables).

Modular systems

- Single to multichannel
- High current boosters up to 800 A
- Extended voltage range up to 60 V
- Low current options (down to aA)
- Multiple user systems
- ARG (Analog Ramp Generator) to perform analog voltage ramp
- Scanning workstations with up to 9 different local techniques (dc-SECM, ac-SECM, LEIS, SKP, SVET, etc.)
- Fully featured impedance analyzer with temperature control

Controlled by a powerful suite of software

- Intuitive user interface
- Preset techniques for typical electrochemical applications
- Multi-technique experiment builder
- External device control
- Multiple graph display
- Data analysis & fit
- Safety & experimental limits
- Software calibration

Patented and unique transient state correction technique Drift correction

Validate EIS measurements quickly and easily with BioLogic Quality Indicators

- THD: Total Harmonic Distortion quantifies the linearity of the response

• NSD: Non-Stationary Distortion indicates the effect of time-variance and transient regime NSR: Noise-to-Signal Ratio ensures the signal is large enough compared to measurement noise

Potentiostat/Galvanostats.

Premium range Essential range EC-Lab[®] softwa Detailed specif

Battery Test Stations & Cyclers.

A comprehensiv R&D grade bat Battery cyclers BT-Lab[®] softwo Why impedanc Detailed specif

Impedance Analyzer.

Scanning Electrochemical Workstation. 32

8
12
18
20

ve range of battery testers	24
tery test stations	25
	26
are	27
e for battery testing?	28
fications	29

		30

Premium Potentiostat/Galvanostats.

SP-200

Transportable potentiostat/galvanostat

The SP-200 is a 500 mA research grade potentiostat/ galvanostat for users who need to work their budget hard. With the 80 fA accuracy ultra-low current option, it is the ideal instrument for applications in electrochemistry, particularly corrosion.

The SP-200 offers a floating mode, analog filtering and a built-in calibration board.

Additionally, the SP-200 can be purchased with a standard DC potentiostat or an EIS capable one. There is also an Ultra Low Current (ULC) option. On-site experiments can be easily performed thanks to its portable design.

Applications

- General electrochemistry
- Sensors
- Corrosion
- Coatings
- Materials
- Batteries
- Electrolysis/anodizing
- Energy

SP-240

4 A of power crammed into a compact chassis

SP-240 is a 4 A transportable potentiostat/galvanostat with EIS. Its integrated booster makes it the perfect instrument for any application in electrochemistry, especially energy device testing.

Options

- Ultra Low Current: Accuracy down to ± 100 fA on 1 pA range
- Built-in EIS analyzer: up to 7 MHz
- Analog Ramp Generator: 1 MV/s, acquisition 1 µs

• HCV-3048

SP-300

Fast, sensitive, stable and modular

The SP-300 is a 500 mA to 10 A state-of-the-art research grade potentiostat/galvanostat with integrated EIS and remarkable specifications such as 7 MHz max EIS frequency, floating mode, analog filtering, built-in calibration board, and stability bandwidths.

The SP-300's modular chassis accepts an optional high current/high-voltage option board.

Alternatively, the SP-300 can accept a second potentiostat board (either standard or EIS) and function as a Bipotentiostat. It is also a multiple user system as each channel board can be used independently by two different researchers.

Options

- Ultra Low Current: Accuracy down to ± 100 fA on 1 pA range
- Built-in EIS analyzer: up to 7 MHz
- Internal boosters:
 - ±1 A/±48 V, ±2 A/±30 V,
 - ±4 A/[-3;14] V, ±10 A/[-1;6] V
- HCV-3048
- Bi-potentiostat
- Analog Ramp Generator: 1 MV/s, acquisition 1 µs

Applications

General electrochemistry (RRDE measurements)

- Sensors
- Corrosion
- Electrolysis/anodizing
- Coatings
- Energy

Premium Potentiostat/Galvanostats.

Premium Boosters.

VSP-300

Small footprint, multichannel potentiostat

The VSP-300 multichannel potentiostat/galvanostat with integrated EIS is a versatile instrument offering **6** slots.

Each channel board can accommodate an Ultra Low Current cable and can be associated with one or several booster kits. Up to 4 booster boards can be plugged in parallel in one VSP-300 chassis.

Materials
 Energy storage

VMP-300

The ultimate multichannel potentiostat

The VMP-300 is the most modular chassis of the range, offering **16 slots** for potentiostats /galvanostats with integrated EIS boards and or booster boards.

They can be combined according to user needs either to reach high currents, or to drive many measurements at the same time on all channels.

EIS measurements can be added as an option. The built-in EIS has a wide frequency range up to 7 MHz.

Low current sensitivity can be improved using the Ultra Low Current option.

All multichannel potentiostats are multiple user systems. Thanks to the Ethernet LAN connection capability, several computers can be connected to the unit at the same time.

HCV-3048

An unparalleled combination of power and speed

The HCV-3048 is designed for battery stack/pack characterizations. The continuous maximum current of ± 30 A for a single unit can be extended up to ± 120 A by connecting four units in parallel. The control voltage range is 0-48 V.

Impedance spectroscopy (EIS) provides valuable information on energy storage and conversion products, helping to identify the kinetic properties of multiple processes within the device under test. The HCV-3048 brings unmatched insight to high-power systems.

Options

- Ultra Low Current: Accuracy down to ± 100 fA on 1 pA range.
- EIS measurement: up to 7 MHz
- Analog Ramp Generator: 1 MV/s, acquisition 1 μs
- Internal boosters: ±1 A/±48 V
 - ±1 A/±48 V ±2 A/±30 V
 - ±4 A/[-3;14] V
 - ±10 A/[-1;6] V
- HCV-3048
- Additional potentiostat/galvanostat/EIS

Internal boosters

High current and high-voltage boosters

A range of internal boosters has been designed to increase the current and the voltage specifications of the **SP-300, VSP-300, VMP-300.** Four models are available (see below).

Depending on the instrument chassis, several similar boosters can be connected in parallel to expand the maximum current of the system, up to 150 A.

Configurations

±1 A/±48 V
±2 A/±30 V
±4 A/[-3;14] V
±10 A/[-1;6] V

Features

- Autoranging: exploit existing current range plus the new booster range
- EIS capability up to 2 MHz
- Plug-in modules
- Plug-and-play
- 5-lead connection type
- Parallel boosters to increase max current

SP-50e

Affordable and easy-to-use

The SP-50e is a robust, single-channel, generalpurpose electrochemical workstation, perfectly suited to both general electrochemistry research needs as well as teaching.

A ±1 ampere capable range makes the SP-50e perfect for energy-based applications including battery, supercapacitor, fuel cell, and electrolysis research.

Powered by EC-Lab®, widely recognized by leading scientists as the benchmark control and analysis software for potentiostat/galvanostats, users are able to exploit a wide range of functions covering not just potentiostat control, but electrochemical analysis as well.

There is no need to split tasks across different software applications. Everything can be found in one place simplifying your professional life, and saving you precious research time. All this, in a compact potentiostat with a reduced laboratory footprint, opening up space on the laboratory bench.

Applications

- Education/training
- General electrochemistry

Options

- Built-in EIS analyzer: up to 1 MHz
- RDE control kit

SP-150e

A research grade workstation

The SP-150e is a potentiostat designed to grow with your research needs. This two-channel, EIS-capable workstation is perfect for a wide range of general electrochemistry applications, but the ±1 A current range makes it especially suitable for energy applications including battery, supercapacitor, fuel cell (RRDE compatible), and electrolysis research.

But should you need more power, this versatile instrument will grow with your research needs. The SP -150e is the only ampere workstation to boast highcurrent capability (800 A with boosters), three EIS quality indicators (THD, NSD, NSR) for EIS validation, and Ethernet compatibility for improved group-working.

It can also be connected to external high current boosters (2, 5, 10, 20, 80 and 100 A) or the FlexP series (see page 16).

Applications

- General electrochemistry
- Sensors
- Corrosion
- Energy sources
- Coatings

Options

- Additional potentiostat/galvanostat/EIS
- Built-in EIS analyzer: up to 1 MHz
- External current boosters: Up to 800 A
- RDE control kit

	All the second s
· • • • • • • • • • •	
· , · · · · · · · · · · · · · · · · · ·	
· . · · · · · · · · · ·	

VSP-3e

Tailor-made for energy applications

A research-grade multichannel potentiostat/ A research-grade multichannel potentiostat/ galvanostat, the VSP-3e is purpose-built to meet the galvanostat, the new VMP-3e's modular design, makes demands of energy research applications. With space it perfect for wide-ranging applications. However, the allocated for up to eight channels, the instrument is ability to connect each potentiostat/galvanostat to an flexible enough to meet the demands of researchers external high-current (up to 800 A) booster channel and R&D specialists alike. And with +/- 1A (expandable makes it especially suitable for battery research/testing. up to 800A with boosters), Ethernet LAN for improved A standard voltage range of ±10 V is extendable to -20 multiple user/PC connectivity and built-in EIS, the V to +20 V. instrument is especially suited to battery research applications. For high-end EIS measurements, a 1 MHz specification is

Energy-specific functionality unique to BioLogic includes:

- Fast CCCV shift (constant current, constant voltage)
- Stack mode (follow individual elements in the pack)
- BCD (Battery capacity determination)
- Automatic plotting for Coulombic efficiency

Options

- Built-in EIS analyzer: up to 1 MHz
- External current boosters: Up to 800 A
- Internal ±4 A booster kit for VSP only
- SAM 50 for stack (50 V) measurement (up to 30 elements with three SAM-50)
- Additional potentiostat/galvanostat/EIS

VMP-3e

16-channel benchmark workstation

complemented by BioLogic Quality Indicators, a feature previously only available on BioLogic Premium instruments. Additional features include CE to GND mode, unique to BioLogic, which enables users to choose from independent channel or multi-electrode configurations and LAN connectivity to improve multiuser working.

Applications

- Electroanalytical
- General electrochemistry
- Corrosion
- Sensors
- Energy sources
- Energy storage
- Batteries
- Coatings

Essential Potentiostat/Galvanostats.

VSP

Affordable, research-grade multichannel potentiostat/galvanostat

The VSP is a research-grade potentiostat system in a 5-channel modular chassis.

Options include EIS capability, 4 A current booster and additional potentiostat channels.

The internal 4 A option takes two slots in the VSP chassis and requires a potentiostat board. External boosters from 2 A up to 800 A can be used with each channel in the VSP.

Applications

Electroanalytical

- General electrochemistry
- Corrosion
- Sensors
- Energy sources
- Energy storage
- Batteries
- Coatings

How to make reliable EIS measurements

Three quality indicators are available in EC-Lab® to ensure the reliability of EIS measurements.

Total Harmonic Distortion (THD)

THD indicates if the amplitude of the current or potential modulation applied to the system is small enough to consider that the system behaves linearly. If it behaves non-linearly, the output signal will contain some harmonics. THD quantifies the non-linearity by evaluating the amplitudes of the N harmonics.

THD is expressed as a percentage. Generally, it is considered that a THD below 5 % is acceptable. In EC-Lab®, it is calculated on the potential and on the current and over 7 harmonics including the fundamental.

 $NSD_{\Delta f} = rac{1}{\left|Y_{f}
ight|} \sqrt{\left|Y_{f-\Delta f}
ight|^{2} + \left|Y_{f+\Delta f}
ight|^{2}}$

Noise to Signal Ratio (NSR)

In an ideal EIS measurement, all the signal energy is contained in the fundamental frequency, but because of various factors such as the accuracy and precision of the measuring device or external perturbations, there might be some energy in other frequencies than the fundamental frequency, the harmonics and the adjacent frequencies. In this document, this additional signal is called noise. It represents all the signals not contained in:

- The fundamental frequency,
- The 7 harmonics used to calculate THD
- · The signal at frequencies adjacent to the fundamental frequency used to calculate NSD.

How do I use them?

High NSR

Non-Stationary Distortion (NSD)

We can distinguish two causes for the non-stationarity of a system: i) the response of the system has not reached its permanent regime; ii) the parameters defining the system are changing with time.

The response of a non-stationary system will contain, in addition to the fundamental frequency, some adjacent frequencies.

NSD is expressed as a percentage and calculated on the potential and on the current.

 $NSR_f = rac{1}{|Y_f|} \sqrt{\sum_k |Y_{k\Delta f}|^2}$

Solution

Decrease the perturbation amplitude of the input signal

Increase the time of the rest period before the EIS measurement

Increase the perturbation amplitude of the input signal

It is a combination of a research quality potentiostat and an 80 A booster built into the same chassis. The potentiostat has the same specifications as the VMP-3e potentiostat boards (with EIS option) when not connected to the booster portion of the unit.

HCP-1005

More power for battery testing

The HCP-1005 is a compact High Current Potentiostat specially designed to study high capacity secondary batteries. With a voltage range of 0.6 to 5 V and a current range of ±100 A, this unit can be used to test Li-ion high current cells. The EIS capability integrated in the chassis is ideal for aging tests.

Applications Lithium-ion Nickel-Cadmium Nickel-Metal hydride Battery

Features

- Booster range included in the autoranging (for boosters up to 20 A)
- EIS capability
- Plua-in module or external chassis
- Plug-and-play 5-lead connection type

FlexP external booster

Power EIS with FlexP

EIS provides valuable information about working electrical devices. It helps identify the kinetic properties of multiple processes within the device under test.

Power EIS brings unmatched insight to very highpower units that have been out of reach until now. Driven by SP-150e, VSP, VSP-3e or VMP-3e potentiostat/galvanostats, the FlexP brings unparalleled electrochemical knowledge and methodology to high-power applications.

Configurations

- □ 60 V/50 A with the FlexP0060 to address battery pack characterization
- 12 V/200 A with the FlexP 0012 to address electrolyzer and fuel cell/electrolyzer characterization

Internal & external Boosters

Deliver more power to your application

SP-150e, VSP, VSP-3e and VMP-3e potentiostats can be interfaced to a separate current booster unit. These modular booster units can be filled with different booster boards (2.5. 10, or 20 A). The standard booster chassis offers 8 available booster slots, each of them connected to a potentiostat board.

For higher current, 80 and 100 A booster units are available. They also exist as stand-alone systems (HCP-803, HCP-1005 see page 17).

Configurations

- External:
- ±2 A, ±5 A, ±10 A, ±20 A on ±10 V adjustable from -20 to +20 V
 - ±80 A on ±3 V
- ±100 A on [0.6 5] V
- Internal kit (only for VSP):
 - ±4 A ±10 V adjustable from -20 to +20 V

Features

- Voltage up to 60 V
- Current up to 200 A
- Parallel ability (x4)
- 10 kHz 1 mHz EIS capable
- Up to 2.4 kW continuous with water cooling
- Cell temperature measurement included

HCP-803

High current potentiostat for supercapacitors and fuel cells

The HCP-803 is a High Current Potentiostat capable of handling ± 80 A with a voltage range of ± 3 V. It is primarily designed for applications in the fuel cell/electrolyzer and supercapacitor areas.

The HCP-1005 structure is similar to the HCP-803. It combines a research potentiostat and a 100 A booster built into the same chassis.

EC-Lab[®]

As powerful as it is user-friendly

Your hardware is only ever as good as your software. With 20 years of constant development, EC-Lab, BioLogic's proprietary, patented software has become the benchmark for potentiostat control software.

Display mode

Most of the experimental parameters can be modified "on the fly" during the experiment, with the changes stored into the raw data file.

The software interface is **adjustable** to create the best possible working environment for the user.

EC-Lab^{®'s} graphics package provided with the software includes a powerful 3D plot feature and a tool to create unique graph templates.

Using our advanced "Process" function, the user can create new variables for each axis. This enables mathematical functions to be performed on data plotted on any axis (x, y1 and y2).

Experiment sequence builder

EC-Lab[®] software contains more than 80 techniques. These techniques can address applications in voltammetry, EIS, corrosion and energy source/ storage development.

A powerful technique builder can execute a series of different modular techniques as well as wait and loop tasks to create complex experimental sequences.

Moreover, within each technique, the user can create up to 100 linkable sequences of an experiment with different parameters. An email can be sent to the user, if desired, to inform him/her when a certain step of the experiment has been reached. Battery cycling can be synchronized with a temperature control unit.

EIS measurements

EIS measurements can be made in both controlled potential and controlled current modes from 10 µHz to 7 MHz.

The patented "drift correction" algorithm and multiple stability parameters allow users to acquire high-quality data from their EIS measurements.

Impedance spectroscopy General electrochemistry Electro-analytical Corrosion Battery Super-capacitor Fuel cell/Electrolyzer Photovoltaic cell

EC-Lab[®] provided with...

- Single potentiostat / galvanostats: SP-50e, SP-150e, SP-200, SP-240, SP-300
- Bipot:
- SP-150e, SP-300
- Multi-potentiostat / galvanostats: VMP-300, VSP, VMP-3e, VSP-300, VSP-3e
- High current potentiostat / galvanostats: HCP-803, HCP-1005
- Battery test stations: MPG2, MPG-205

EC-Lab[®] Software

EC-Lab® Analysis package

An extended range of analyses

Display

Powerful electro-analytical analysis tools (such as peak find/height, convection wave, integral, Tafel fit, Rp determination) are available in EC-Lab®. These analyses incorporate typical fit routines (linear, polynomial, multi-exponential) and algorithms. All the analysis results are stored in a separate file.

Fitting

EC-Lab[®]'s EIS modeling package, ZFit, utilizes the equivalent circuit approach. There are over 150 standard circuits and two minimization algorithms available to help understand impedance plot information.

The user can define and build his own circuit model using a range of fourteen simple elements (R, C, L, Q, W, G, W, W, M, G, G, C, L, M, M). The last elements can be assimilated to transmission lines.

A batch processing feature allows the fitting of multiple cycles in an impedance experiment. Cable effects can be compensated by using cable compensation tool.

Simulation

Several tools are available to simulate CV curves, Tafel plots or EIS data. They can be used as training tools.

CV Sim allows the user to create data with different mechanisms such as single (E) or multi (up to EEEEE) electron transfer. Electron transfer reactions can also be mixed with chemical reactions to simulate an EC mechanism.

驡

CV Fit...

Peak Analysis.

Wave Analysis.

Levich.

Koutecky-Levich...

R_n Fit...

ĥtr

7502

By

80

VASP Fit..

Tafel Fit...

Noise...

Corr Sim.

Electrochemica

CASP Fit..

Z Fit...

Z Sim.

Mott-Schottky

Compensation

Kramers-Kronig..

N/A

Process data (capacity, efficiency, energy...)

Photovoltaic analysis (fill factor, efficiency...)

Polynomial Fit..

Multi-Exponential Fit.

Line Fit...

Subtract Files.

Integral...

Min Max..

Filter.

Fourier Transform.

Linear Interpolation..

Channel Specifications

	Premium	Essential
General		
EIS capability	10 µHz to 7 MHz	10 μHz to 1 MHz
EIS Quality Indicators	yes	yes (with "e" type channel board)
Analog Ramp Generator	yes (1 MV/s), sampling rate 1 µs	n.a.
Floating option	Floating, WE to Ground, CE to Ground	CE to Ground
Permeation (WE to Ground)	Yes	No
Multi-electrode (CE to Ground)	Yes	Yes
Filters	hardware/software	software
Acquisition time	12 μs (1 μs with ARG option)	20 µs
Electrodes connections	2, 3, 4, 5	2, 3, 4, 5
IR compensation	manual, EIS, current interrupt (software and hardware)	manual, EIS, current interrupt (software)
Current		
Maximum current	±500 mA	±400 mA for VSP
		±1A for "e" series chassis
Current with standard board	9: 10 nA to 1 A	6: 10 µA to 1 A
ranges with low current option	13: 1 pA to 1 A	N.A
Lowest with standard board	±100 pA on 10 nA range	±20 nA on 10 μA range
accuracy with low current option	±100 fA on 1 pA range	N.A
Lowest with standard board	0.8 pA on 10 nA range	0.8 nA on 10 µA range
resolution with low current option	80 aA on 1 pA range	N.A
Current internal	1 A, 2 A, 4 A, 10 A, Up to 150 A	4 A for VSP only
booster external	Premium External: HCV-3048 (30A/48 V)	2, 5, 10, 20, 80, 100 A, FlexP0060, FlexP0012
		1 TO (//20 pF)
input impedance	1 102 (// 10 pF), 0LC: 100 102 (//6 pF)	1102 (//20 pF)
Voltage		
Compliance	±12 V	±10 V
Max applied potential	±10 V (±48 V with 1 A/48 V booster)	±10 V adjustable between [-20 ; +20] V
Resolution	1 μV on 60 mV	5 μV on 300 mV
Accuracy	< ±1 mV	< 20 mV
Range	±2.5 V, ±5 V, ±10 V, ±25 mV, ±250 mV	±2.5 V, ±5 V, ±10 V
Maximum scan rate	200 V/s (1 MV/s with ARG option)	200 V/s
Control amplifier		
Potentiostat bandwidth	8 MHz	1 MHz
Potentiostat rise/fall time	< 500 ns	< 2 µs
General		
I/O (analog/TTL)	3/2	3/2
Interfaces	Ethernet, USB 2.0	Ethernet, USB 2.0
n a : nat available		

n.a.: not avallable

Chassis Specifications

Premium	SP-200	SP-240	SP-300	VSP-300	VMP-300
Slots available	1	1	2	6	16
Dimension (WxDxH)	167 x 410 x 225 mm	205 x 410 x 225 mm	205 x 410 x 225 mm	254 x 517 x 337 mm	534 x 565 x 315 mm
Weight	7.2 kg	7.5 kg	7.5 kg	20 kg	30 kg
Power Requirement	350 W	350 W	350 W	650 W	1500 W

Essential	SP-50e	SP-150e	VSP	VSP-3e	VMP-3e
Slots available	1	2	5	8	16
Dimension (WxDxH)	136 x 372 x 209 mm	136 x 372 x 209 mm	435 x 335 x 95 mm	225 x 320 x 405 mm	495 x 465 x 260 mm
Weight	3.9 kg	3.9 kg	8 kg	12 kg	15 kg
Power Requirement	110 W	110 W	300 W	1000 W	850 W

Detailed Specifications.

Applications

	Pren Std	nium EIS	ULC*	Booster ⁽¹) ARG*
Education					
General electrochemistry	_				
Electro-catalysis	- =-	-	-	_	_
Nonotechnology/sensors					
Battery	_	-		_	
Supercapacitor	- =				
Fuel cell/Electrolyzer	_				
Solar cells					
Electrolysis					
Pack of cells					
Corrosion					
Coatings					
Matariala	_	_	_	_	
Materials					
For each instrument,	SU	itable		recomme	ended
modules can be mixed	* ULC:	Ultra L	ow Cu	rrent *	* ARG:
together	(1): mo	re deta	ails on p		

Premium boosters

Specifications

	±1 A/±48 V	±2 A/±30 V	±4 A/[-3;14] V	±10 A/[-1;6] V	±30 A/[0;48] V
Current					
Compliance	±1 A	±2 A	±4 A	±10 A	±30 A (±120 A with 4 units)
Accuracy	< 2 mA on 1 A range	< 4 mA on 2 A range	< 8 mA on 4 A range	< 20 mA on 10 A range	< 150 mA on 30 A range
Auto-ranging	yes	yes	yes	yes	0.3 A; 3 A; 30 A
Voltage					
Compliance	±49 V	±30 V	-3 V ; +14 V	-1; +6 V	-1; +50 V
Control	±48 V	±30 V	-3 V ; +10 V	-1; +6 V	0;+48 V
Features					
EIS frequencies	2 MHz - 10 µHz	1 MHz - 10 µHz	1 MHz - 10 µHz	1 MHz – 10 µHz	500 kHz – 10 µHz
Bandwidth (-3 dB)	> 2 MHz	> 3 MHz	> 4 MHz	> 8 MHz	120 kHz
Slew rate (no load)	> 15 V/µs	50 V/µs	50 V/µs	50 V/µs	> 20 V/µs
Rise/fall time (no load)	< 250 ns	< 200 ns	< 200 ns	< 200 ns	< 3 µs
Floating mode	yes	yes	yes	yes	yes
Parallel ability	yes	yes	yes	yes	yes up to 4
Connection	2, 3, 4, 5 leads	2, 3, 4, 5 leads	2, 3, 4, 5 leads	2, 3, 4, 5 leads	2, 3, 4 leads

Essential boosters

	2/4/5 A	10/20 A	80 A/HCP-803	100 A/HCP-1005
Current				
Compliance	2 A: ±2 A, 4 A: ±4 A, 5 A: ±5 A	10 A: ±10 A, 20 A: ±20 A	±80 A	±100 A
Accuracy	2 A: < 4 mA on 2 A range, 4 A: < 8 mA on 4 A range, 5 A: < 10 mA on 5 A range	10 A: < 20 mA on 10 A range, 20 A: < 40 mA on 20 A range	< 800 mA on 80 A range,	< 1 A on 100 A range
Auto-ranging	yes	yes	no	no
Voltage				
Compliance	±10 V	±10 V	±5 V (At 1 A) ±3 V (At 80 A)	0.6 - 5 V
Control	±10 V adjustable between [-20 ; +20] V	±10 V adjustable between [-20 ; +20] V	±5 V (At 1 A) ±3 V (At 80 A)	0.6 - 5 V
Features				
EIS frequencies	2 A: up to 150 kHz, 4 A: up to 130 kHz, 5 A: up to 125 kHz	10 A: up to 80 kHz, 20 A: up to 30 kHz	up to 20 kHz	up to 10 kHz
Bandwidth (-3dB)	1 MHz	1 MHz	1 MHz	1 MHz
Rise time and fall time (no load)	15 μs (potentio) 40 μs (galvano)	25 to 60 μs (potentio) 50 to 120 μs (galvano)	95 μs (potentio) 150 μs (galvano, 10 mΩ)	1.7 ms (potentio) 4 ms (galvano, 20 mΩ)
Parallel ability	no	no	no	no
Connection	2, 3, 4, 5 terminal leads	2, 3, 4, 5 terminal leads	2, 3, 4, 5 terminal leads	2, 3, 4, 5 terminal leads
General				
1 external input	security to open circuit (TTL level)	security to open circuit (TTL level)	security to open circuit (TTL level) Emergency push	Security to open circuit (TTL level) Emergency push

FlexP 0060	FlexP 0012
50 A up to 200 A (4 in parallel)	200 A up to 80 parallel)
0.2% of value ±0.1% FSR < 200 mA at 50 A	0.2% of value ± < 800 mA at 20
[-2.5 ; + 60] V (water cooled)	[-2.5 ; 11.9] V (w
[-2.5 ; + 60] V (water cooled)	[-2.5 ; 11.9] V (we
10 kHz	10 kHz
	-
< 10 µs	< 20 µs
yes up to 4	yes up to 4
2, 3, 4 terminal leads	2, 3, 4 terminal
embedded (cell temperature and emergency)	embedded (ce and emergenc
	FlexP 0060 50 A up to 200 A (4 in parallel) 0.2% of value ±0.1% FSR < 200 mA at 50 A [-2.5 ; + 60] V (water cooled) [-2.5 ; + 60] V (water cooled) [-2.5 ; + 60] V (water cooled) 10 kHz

Battery Test Stations & Cyclers

A full range of battery testers

Depending on your application, your requirements for battery/supercapacitor testing can be different (reference electrode required or not, sampling, maximum frequency for EIS, number of channels, etc). BioLogic offers a wide range of testing solutions to match your needs.

For advanced research measurements, BioLogic potentiostats/galvanostats are the right choice.

The BCS-800 series offers the best in-class performance of any battery cycler with optional EIS and up to 128 channels in a single cabinet. This high specification and versatility makes it the ideal solution for advanced highthroughput measurements as well as common, everyday battery cycling procedures.

The MPG-200 series is an intermediary solution. It offers **research grade** battery testing and can be provided in a rack, with a maximum of 80 channels **to perform many tests simultaneously.** Each channel is an independent potentiostat / galvanostat.

How to choose your battery tester?

	VMP-3e/VMP-300	MPG-200 series	BCS-800 series	
Application	High-end research	Research development	High-throughput battery/ material screening	
Current ranges	1 pA - 150 A	10 µA - 5 A	10 μA - 120 A	
Voltage range	±10 V	±10 V on MPG-2 -2;9 V on MPG-205	0;10 V	
EIS frequency range	7 MHz - 10 μHz	100 kHz - 10 μHz	10 kHz – 10 mHz	
Built-in EIS	Yes. On each channel	Yes. On each channel	Yes. On each module	
Acquisition time	200 μs/1μs with ARG option	200 µs	2 ms	
Electrode connection	2,3-electrode/4-points measurement with CE measurement	2-electrode/4-points measurement 3-electrode/5-points on MPG-2	2-electrode/4-points measurement	
HPC measurement	Yes. Down to 6 ppm	Yes. Down to 6 ppm	Yes. Down to 6 ppm	
Channels/module	16	16	8	
Max Channels/cabinet	-	80	128	

Options

- EIS (100 kHz to 10µHz)
- Rack (5 units)
- Short (25 cm) or long cables (2.5 & 3 m)
- Temperature probe
- Coin cell, cylindrical and pouch cell holders (see Accessories catalog)
- 5 A booster for MPG 2

0.004 • Resol adjus • Acqu

Software

Like BioLogic potentiostat / galvanostats, the MPG-200 series is supplied with **EC-Lab® software.** It provides techniques specifically designed for batteries and general electrochemistry applications, such as cyclic voltammetry. An extended range of analyses are also available (capacity, efficiency, energy, etc). Note that **EC-Lab®** allows the control of several VMP-3e/VMP-300 or MPG-200 instruments from one session.

MPG-200 series R&D grade battery test stations

The MPG-200 series is offered in two fixed configurations with or without EIS on every channel: - MPG-2: 16 channels/100 mA each - MPG-205: 8 channels/5 A each

The MPG-200 series can be provided in a rack capable of supporting up to 5 units.

Only one computer is necessary to control all units thanks to the solution's Ethernet capability. With this connection, the MPG-200 series can be installed on a Local Area Network to allow multiple users to access instruments and follow battery cycling remotely.

The MPG-200 series offers temperature measurement and three optional connection modes to the battery (battery holder, short or long cables). Each channel has two analog inputs and one analog output to interface with external instruments.

16 channels100 mA3 electrodes/5 points

- 8 channels

- 5 A

- 2 electrodes/4 points

Specifications

Current ranging: 10 μA up to max current with a resolution 0.004% of the range
Resolution of 300 μV programmable down to 5 μV by

adjusting the dynamic range (100 μ V resolution on 5 V range) Acquisition time: 200 μ s

No limit in time and data recording

BCS-800 series

Battery cycling test stations

Each BCS-800 module is made up of 8 channels. To ensure better accuracy in current control and measurement, **5 current ranges** are available depending on the model.

BCS-815 channels can be connected in parallel to increase the maximum 16 on MPG-2, 8 on MPG-205 current up to 120 A.

With an 18-bit analog to digital converter for the voltage measurement, the resolution of the BCS-800 is an impressive $40 \ \mu V$.

EIS-capable modules provide EIS over a frequency range from 10 kHz to 10 mHz for accurate and fast determination of internal battery resistance on every channel.

BCS-800 modules can be added to a single cabinet. Several sizes are offered (38U, 24U, 12U and 6U).

Specifications

- Optional high quality EIS: Full scan from 10 kHz to 10 mHz
- 18-bit A/D converter (40 μV resolution)
- HPC measurement down to 6 ppm
- Modularity from few μA to 120 A
- Voltage measurement from 0 V to 10 V
- Module mixing (BCS-805/810/815)
- 2 ms acquisition time
- Several cabinet sizes
- Plug-and-play module installation

Options

Connection:

- Cell cable from 25 cm to 10 m
- CCH-1xx Coin cell holder
- BH-1i Cylindrical battery holder
- CCH-8 8 positions coin cell holder
- CC8 Current collector to set parallel mode (up to ±120 A)

Cabinet:

- Rolling cabinet (38U, 24U)
- Benchtop cabinet (12U, 6U)

BT-Lab[®] provided with...

BCS-805, BCS-810, BCS-815

BT-Lab[®]

An interface specifically designed for battery testing

BT-Lab[®] software offers great usability and flexibility for battery cycling. The powerful «ModuloBat» sequence builder offers **15 control modes for easy programming** of unique sequences, while the interface is informative and simple, simultaneously showing the experiment parameters and the corresponding graph of each selected channel.

Global view

All channels can be viewed **simultaneously** on an advanced global view. The status of each channel is displayed with different colors to give quick, informative, and visual indicators. The time, current, voltage and charge values can be all displayed simultaneously.

Comprehensive graphic and analysis package

The **BT-Lab**[®] graphic package is embedded in the software and includes powerful tools to create **graph templates** and analyze data. This package offers a unique trace filtering option by channel. This results in a multigraph window capable of displaying **up to 128 graphs** within a single window. With the advanced graph properties, the user can add and customize new variables for each axis. Powerful analysis tools (dQ/dV, HPC, etc) are also available in **BT-Lab**[®].

EIS capability

BT-Lab[®] software includes the capability for electrochemical impedance spectroscopy (EIS) measurement **on every channel** of EIS-capable modules, in a frequency range of 10 kHz to 10 mHz both in potentiostatic and galvanostatic modes. A **drift correction** option is available to correct the voltage drift of the battery during the EIS measurement.

ModuloBat

15 control modes:

- Constant Current/ Voltage/Power/ Resistance
- Voltage/Current Scan
- Galvano/Potentio EIS
- DCIR
- Galvano/Potentio ACIR
- Current Interrupt
- Rest/Loop
- Urban Profile Import
- Up to 100 sequences
- 3 limits per sequence

3 recording conditions per sequence

Modify on the fly

27

Battery Test Stations & Cyclers

Why impedance measurement for battery testing?

The BCS-800 series, with its fast bandwidth controllers, offers both potentio and galvano-control for EIS measurements in a 10 kHz to **10 mHz** frequency range, with a user-specified number of data points and recorded frequency range. The user also controls the excitation amplitude. Impedance spectroscopy can be used as a standalone technique, but it can also be seamlessly incorporated into the ModuloBat technique to record the impedance spectrum of the battery, either in equilibrium or steady-state conditions. This means you not only can record a spectrum of the cell at a constant voltage, but also under a given galvanostatic load.

If there are sources of uncompensated inductance or capacitance in the cell, only a full-impedance spectrum can be a reliable measure of internal resistance through an automated spectrum fitting procedure.

The low frequency range of the spectrum is an invaluable source of information concerning Li+ diffusion within the electrolyte (separator), as well as porosity within electrodes and inside the active material particles.

18-bit resolution allows the recording of small-amplitude EIS on top of substantial DC currents with very high levels of accuracy.

✓ ZFit	- Bi	o-Lo	gic			Х
Inputs						
Multi	files				4 =	*
Select	Curre	ent	✓ cycle			
Equivale	ento	ircuit	selection			
L1+R1+(22/(R2+0	13)+Mg4			~
Edit		Load	i Save			
Fit						~
Method	Sir	nplex			~	
Stop ran	dom	iize o	n 10000	iterations		
Stop fit o	n 1	0000	,	iterations	~	
Weight			, 	Rendered		
	E I	ultar	utomatically			
Results		un un	acompocury			
param.	sel	sign	value	unit	dev.	^
L1		+/-	0.160 2e-6	н	4.232e-6	
R1		+/-	9.361e-3	Ohm	0.791 2	
Q2		+/-	4.057	F.s^(a - 1)	83 798	
a2		+	0.6736		1	
R2		+/-	4.858e-3	Ohm	219.7	
Q3		+/-	511.8	F.s^(a - 1)	1.502e9	
a3	찌	+	0.7185		1	
Rd4	히	+	0.071	Ohm	945 755	
t4	히	+/-	2 176	s	13.29e9	
g4	R	+	0.5531		1	~
Pseudo	C					
χ^2		12.46	e-6	χ/\sqrt{N}	0.551 4e	-3
$\chi^2/ z $		0.010	27	Cvde	1	
Iteration	s -	10000	D (Simplex)			
Calculate		Minin	alaa Stor	Conu		Class
Calculate		dinin	mic Stot	Logy		Ugse

Specifications

	MPG-2	MPG-205
Channels/module	16	8
Cell connection	2, 3, 4 or 5 terminal leads	2 or 4 terminal leads
Cell control		
Compliance	±10 V @ 100 mA	-2 V; 9 V @ 5 A
Maximum current	±100 mA continuous	±5 A continuous
Maximum potential	10 V @ 100 mA	9 V @ 5 A
Potential resolution	 300 μV d	lown to 5 μV
Current resolution	0.004% of	FSR* /0.8 nA
Current accuracy	±0.1% of contr	ol ±0.01% of FSR*
Voltage measurement		
Ranges	±10 V, ±5 V, ±2.5 V	0 – 5 V, 0 – 10 V
Accuracy	±0.1% of contr	ol ±0.01% of FSR*
Resolution	0.004	% of FSR*
Acquisition speed	20)0 µs
Noise (peak to peak 0-100 kHz)	60	00 μV
Curent measurement		
Ranges	±100 mA, ±10 mA, ±1 mA, ±100 μA, ±10 μA, autorange	±5 A, ±1 A, ±100 mA, ±10 mA, ±1 mA, ±100 μA, ±10 μA, autorange
Accuracy	±0.1% of contr	ol ±0.01% of FSR*
EIS option		
Frequency range	100 kHz	z to 10 µHz
Amplitude	1 mVpp to 1 Vpp, 0.1% to	50% of the current range
Mode	Single Sine, Multi Sine, FFT analyis	
General		
Dimensions (W x D x H)	260 x 495 x 465 mm	254 x 494 x 454 mm
Power requirements	350 W, 85-264 V, 47-440 Hz	860 W, 85-264 Vac, 47-440 Hz
Weight	17 kg	25 kg

	BCS-805	BCS-810	BCS-815
Channels / module	8	8	8
Voltage			
Range	0 V to 10 V	0 V to 10 V	0 V to 9 V
Control resolution Measurement resolution	150 μV 40 μV (18 bit)	150 μV 40 μV (18 bit)	150 μV 40 μV (18 bit)
Accuracy	<±0.01% of value ±0.3 mV	<=0.01% of value ±0.3 mV	<±0.01% of value ±0.3 mV
Slew rate	150 kV/s	150 kV/s	3 kV/s
Current			
Max (continuous) per channel	±150 mA	±1.5 A	±15 A
Ranges	5: 100 mA down to 10 µA	5:1 A down to 0.1 mA	5: 10 A down to 1 mA
Control resolution Measurement resolution	Down to 800 pA Down to 0.2 nA (18 bit)	Down to 8 nA Down to 2 nA (18 bit)	Down to 80 nA Down to 20 nA (18 bit)
Accuracy	< 0.05% of value ±0.015% of FSR	< 0.05% of value ±0.015% of FSR < 0.1% of value ±0.015% of FSR (1 A range)	< 0.05% of value ±0.015% of FSR < 0.1% of value ±0.015% of FSR (1 A range) < 0.3% of value ±0.04% of FSR (10 A range)
Parallel ability	No	No	Yes Up to ± 120 A with 8 channels
EIS			
Built-in	On each module	On each module	On each module
Range	10 kHz – 10 mHz	10 kHz – 10 mHz	10 kHz – 10 mHz
Measurement			
Thermocouple	n.a	K Type on each channel -25 °C +200 °C with accuracy of ±2 °C	K Type on each channel -25 °C +200 °C with accuracy of ±2 °C
Analog in	1 (18 bit) on each module	1 (18 bit) on each module	1 (18 bit) on each module
Analog out	1 (16 bit) on each module	1 (16 bit) on each module	1 (16 bit) on each module
Cell connection			
	4 terminal leads + Guard	4 terminal leads + Guard	4 terminal leads
General			
Height	10	2U	4U
Weight	5 kg	10 kg	23 kg
Power consumption	60 W	220 W	1700 W
n.a.: not available			

Impedance Analyzer

A wide range of comprehensive solutions.

From impedance analyzer to temperature control units and sample holders

MTZ-35

35 MHz Impedance Analyzer

The MTZ-35 is an impedance analyzer dedicated to electrical characterization over the frequency range of 10 µHz to 35 MHz.

The MTZ-35 can be coupled with the High Temperature Furnace HTF-1100 and the Intermediate Temperature System ITS-e in order to investigate materials properties over a wide temperature range (-40 °C to 1100 °C).

Three kinds of sample holders are offered: HTSH-1100 for high temperature use, Controlled Environment Sample Holder CESH-e for intermediate temperature use (-40 °C to 150 °C) and HTCC for liquids/gels materials in the temperature range between -50 °C and 180 °C.

Specifications

Generator	
Frequency range	10 µHz to 35 MHz
Voltage range DC	100 µV to ±10 V
Voltage range AC	100 μV to 10 V
Measurement ranges	
Inductance	10 nH to 10 kH
Capacitance	1 pF to 1000 μF
Resistance	$1\text{m}\Omega$ to 500 M Ω
Basic accuracy	0.1%

Temperature Control Unit

	Operating Temp	Features
HTF-1100	RT to 1100 °C	Heating rate adjustable K-type thermocouple
ITS-e	-35 to 150 °C	Temperature accuracy: 0. PT1000 probes

	Sample H
CESH-e on its base	$\begin{array}{c} \Phi = 25 \text{ mm} \\ \Phi = 12 \text{ mm} \\ \Phi = 03 \text{ mm} \\ \hline \Phi = 03 \text{ mm} \\ \hline \Phi = 03 \text{ mm} \\ \hline \Theta \\ \Theta \\$

MT-Lab® Software

MT-Lab[®] is an intuitive software used to control the MTZ-35. It also controls several temperature control units:

- High temperature furnace (HTF-1100)
- Intermediate Temperature System (ITS-e)
- Temperature control systems using Eurotherm 22xx/35xx controllers

Open circuit/Short circuit compensation

MT-Lab® software is provided with a compensation protocol for the compensation of residual impedance due to cell cables and test fixtures.

MTZ-25 Connection	
Enable auto connection at the start of the program.	COM port: COM7 V Connect
Cables Compensation	
Reset cables compensation	Perform cables compensation
Temperature Control Unit Connection	
Controller Model : Watlow ~	

Temperature control management

Five temperature control modes are available with MT-Lab®. The software offers a wide range of heating rates and two temperature stabilization modes (fast and precise) based on closed-loop temperature regulation. Temperature control is optimized. Setpoint temperatures are reachable and adjustable without overshoot.

A complete graphics package

MT-Lab[®] is very easy-to-use software. The settings and graphs are displayable on one screen view. The software includes numerous graphic tools and advanced tools for equivalent circuit modeling (ZFit). Users can build their own circuit model using a range of 14 electrical elements (R, C, L, Q, L, W, W, W, W, M, M, M, G, G, G, G).

Scanning Electrochemical Workstation.

Scanning Electrochemical Workstation.

Systems for localized electrochemistry measurement

The traditional potentiostat/galvanostat measures an average response of the electrode material, which is often considered to be homogeneous. However, for more detailed studies, it is interesting to look beyond this homogeneity to study the spatial dependence of electrode properties.

Our modular localized electrochemistry platform can include up to 9 distinct localized measurement techniques. The table below summarizes the techniques, the type of information that can be obtained, the resolution and typical applications.

Scanning	techniques	Information	Resolution	Applications
SECM	Scanning ElectroChemical Microscopy	reactivity, conductivity	probe size	Biology, catalysis, corrosion and coatings, materials, sensors, and sustainable energy, including fuel cells and batteries
ac-SECM	Alternating Current Scanning ElectroChemical Microscopy	reactivity, conductivity, or localized EIS (no mediator required)	probe size	Biology, catalysis, corrosion and coatings, materials, sensors, and sustainable energy, including fuel cells and batteries
ic-SECM	Intermittent Contact Scanning ElectroChemical Microscopy	topography and reactivity or conductivity or localized EIS.	probe size	Biology, catalysis, corrosion and coatings, materials, sensors, and sustainable energy, including fuel cells and batteries
LEIS	Localized Electrochemical Impedance Spectroscopy	local impedance of the sample	hundreds of µm	Batteries, and corrosion and coatings
SVP (SVET)	Scanning Vibrating Probe (Scanning Vibrating Electrode Technique)	electrochemical activity	tens of µm	Biology, batteries, and corrosion and coatings
SDS (SDC)	Scanning Droplet System (Cell)	dc electrochemistry in a droplet of electrolyte	hundreds of µm	Catalysis, corrosion and coatings, and materials
ac-SDS	Alternating Current Scanning Droplet System	impedance in a droplet of electrolyte	hundreds of µm	Catalysis, corrosion and coatings, and materials
SKP	Scanning Kelvin Probe	contact potential difference related to work function, and/or corrosion potential/ topography	probe size	Corrosion and coatings, materials, and sustainable energy, particularly photovoltaics
OSP	Optical Surface Profiler	topography	100 nm (Z) 30 μm (X & Y)	any field, complementary to the above

M470

Ultra-high-resolution scanning stage with multiple modular techniques

The M470 is the 4th generation of scanning probe systems, which includes a high-resolution scanning stage and the most comprehensive range of modular scanning probe techniques. The M470 achieves the perfect balance of scan speed, resolution and accuracy to deliver the highest standard in spatially resolved electrochemical measurements.

The fast, precise, closed-loop positioning system is designed specifically for the demands of scanning probe electrochemistry.

9 available techniques

<u>SECM*</u>	LEIS*	<u>ac-SDS*</u>
ac-SECM*	SVET*	<u>SKP</u>
ic-SECM*	SDS*	OSP
* Additional: E and EIS suites	lectroche included.	mistry, Corrosion

Options

galvanostats:

• Multichannel potentiostat: SP-300, VSP-300 and VMP-300

Any SP-/VSP-/VMP-configuration offers high dc current measurement sensitivity and increased EIS bandwidth. Owners of Premium potentiostats have the option of purchasing the M470 system with a hardware interface to connect to their existing potentiostat.

To facilitate the mounting of low current amplifiers near the electrochemical cell, adjustable stands and brackets are provided which mount directly to the M470 base plate.

The M470 is compatible with a large range of potentiostat /

Single potentiostat: SP-200 and SP-240

Scanning Electrochemical Workstation.

Glove Box Cables

Optional glove box cables are available for the M470. The cables replace the standard cables of the M470 allowing the control unit to remain outside of the glove box, while the scan head and attached devices are used inside the glove box. Each set includes the necessary cables and bulk head connector.

Scanning Electrochemical Workstation.

Probes

The foundation of a great measurement is a great probe, that's why we provide one of the most comprehensive range of probes, each individually characterized.

Materials	Options / sizes
fused silica & platinum: Ø 4 mm	10, 15, 25 µm
borosilicate & platinum: Ø 2 mm	1, 2, 5, 10, 15 or 25 j
LDPE & platinum	> 5 µm
LDPE & platinum	> 5 μm
brass & tungsten	150 or 500 µm
PEEK	100 or 500 µm
	Materials fused silica & platinum: Ø 4 mm borosilicate & platinum: Ø 2 mm LDPE & platinum LDPE & platinum brass & tungsten PEEK

Tools

A wide variety of optional accessories are also available, including various probe options, cell options (environmental TriCell[™], µTriCell[™], shallow µTriCell[™], Foil Cell) and long working distance optical video microscope (VCAM3). Additionally, the USB-PIO module allows the M470 to monitor digital signal levels and switch external hardware synchronized with experiments and movements.

Scan-Lab® Software

All scanning probe microscopy systems come with lifetime software updates that allow the user to benefit from new features.

The user is able to select an experiment from within the technique to provide a powerful user interface, fully configurable with options to save and recall complex setups.

Data can be manipulated within the experiment and allows 2D and 3D heat map presentations as well as advanced analysis features. All experiments can be combined in a cutting-edge sequencing engine that incorporates logic elements such as loops, delays, probe movement and more, to provide a powerful research tool now and for the future.

3DIsoPlot adds a further component to the line-up by providing fully rendered 3D data display. 3DIsoPlot allows data to be rotated, angled, flipped, scaled, zoomed and more to provide beautifully rendered imagery over a huge range of scales suitable for large posters or projections.

The Microscopic Image Rapid Analysis (MIRA) package rounds off the line-up with 2D and 3D surface analysis features for experiments such as approach curves and area scan imagery. This truly powerful package is gaining popularity due to its strong analytical capabilities.

Specification

M470
9 techniques
yes
20 nm
110 mm
10 mm/s
yes (ic-SECM)
±10 V
1 A to 100 pA
24-bit
10 µHz to 3 MHz
yes

For more information visit **www.biologic.net**

Application notes

White papers

Tutorials

Videos

An instrument for every possible application.

ENERGY STORAGE & CONVERSION

Batteries Fuel cells & electrolyzers Supercapacitors **Photovoltaics Redox Flow Batteries RESEARCH ELECTROCHEMISTRY** Analytical Electrochemistry Sensors Corrosion **MATERIAL SCIENCE**

With the largest, most comprehensive range of potentiostats available on the market and product lines for high-performance battery cyclers, impedance analyzers and scanning probe workstations, you will be sure to find a BioLogic instrument that suits your needs. Whatever, your field of interest.

Here to help.

Online/offline - wherever you are...

BioLogic prides itself in the quality of its potentiostats. We build robust, reliable instruments designed to withstand the rigors of time and the laboratory. But if you do ever encounter a problem with your instrument, you can rest assured that our global support network will be close at hand to help find you a solution quickly and effectively.

We also offer a wide range of training services, ranging from customer installations to user training sessions. These are available onsite (when possible) and also via remote-working training programs.

Innovation.

Innovation is engrained in our commercial DNA. The first multi-channel computer-controlled potentiostat (MacPile, 1991), Ethernet connectivity and Embedded EIS are just some of the BioLogic innovations helping scientists around the globe. Our high-guality, high-performance instruments have played a pivotal role in leading research projects since 1983.

www.biologic.net

Shaping the future. Together.

BioLogic Learning Center

A wealth of scientific knowledge. And it's only a click away. BioLogic's Learning Center is a blog with articles for all scientific fields related to BioLogic instruments: Electrochemistry, Battery testing, Lifesciences, Material Characterization and Rapid Kinetics amongst others.

The Learning Center includes over 100 articles to help you get the best out of your instrument, together with more general, scientifically focused papers that will cover key scientific themes in broader detail. Visit https://www.biologic.net/topics or scan the QR code.

BioLogic serves its customers worldwide through its affiliate offices and an extensive distribution network

Headquarters BioLogic SAS

4, rue de Vaucanson - 38 170 Seyssinet-Pariset France Phone: +33 476 98 68 31 Fax: +33 476 98 69 09

Affiliate offices

BioLogic USA, LLC

P.O.Box 30009 - 37 930 Knoxville USA Phone: +1 865 769 3800 Fax: +1 865 769 3801

BioLogic Pvt Ltd

Unit No.204, Odyssey IT Park, Road No. 9, MIDC Wagle Estate, Thane West, Mumbai-400604 MH India Phone: +91 022 25829074

BioLogic Middle East

DMCC Office - No. 1206, Indigo Icon Tower, Cluster F, Dubai JLT **United Arab Emirates** Phone: +971 455 151 82 Fax: +971 455 151 63

BioLogic Singapore

No.18, Boon Lay Way #02-105 (A), Tradehub 21, Singapore Phone: +65 92335838

BioLogic Science Instruments Ltd

Bradbury House, Market Street, Glossop Derbyshire, SK13 8AR **United Kingdom** Phone: +44 (0) 333 012 4056

BioLogic Spain

Calle Diputació, 262, 11, Barcelona 08007 Spain Phone: +34 656 876773

BioLogic Science Instruments GmbH

Rodeweg 20, D-37081 Göttingen Germany Phone: +49 (0)551 38266900

Via Acquanera, 29 tel. 031.526.566 (r.a.) info@calpower.it

22100 COM0 fax 031.507.984 www.calpower.it

Shaping the future. Together.

www.biologic.net