ceec
 AN IKONIX BRAND

Powering Production.' ${ }^{\text {™ }}$

Cal Power

OUR STORY

Since 1978 EEC has been providing AC Power Sources for the power conversion industry. Our commitment to quality, innovation, and customer service has helped set the expectation for the industry. In 2020 we introduced the 8500 Series Power Source, the world's highest power density single phase AC Source. As of 2021 we joined the Ikonix Family to become an Ikonix brand, where we continued to innovate and shape the power conversion industry.

CUSTOMER HAPPINESS PROMISE

We aim to provide an amazing experience and quality testers that last a long time. If you're not satisfied with your power source, return it within 45 days for a full refund. Calibrate annually with us, or one of our authorized partners, and we'll extend your warranty an additional year for the service life of your power source, and at least five years after discontinuation. If it breaks during that time, we promise to fix it for free (unless abuse or excessive damage is present). When your power source reaches the end of its service life, we'll
 responsibly recycle it and give you a discount on a replacement.
*Annual calibration and inspection must be made in each successive year starting one year after the original purchase date in order to remain eligible for extended warranty coverage beyond the standard warranty period (five years).

> 5 YEAR WARRANTY

Your new power source is warranted to be free from defects in workmanship and material for a period of (5) years from date of shipment.
**5 year warranty is valid on any model purchased in 2021 or after.

ONGOING SUPPORT

We work to provide the best service and support in the industry. With decades of industry experience we are the pros you can trust to help you be compliant to NRTL standards. We'll work closely with you to help you achieve your goals. We've built a worldwide network of knowledgeable partners, so you're covered no matter where you are.

A TIMELINE OF OUR HISTORY

A HISTORY OF INNOVATION

EEC is founded in Taipei City, Taiwan.

Introduced the CFC Series AC power source and become the first AC power Source/Inverter professional manufacturer in Taiwan.

Introduced the CFC-100W Series Digital AC power sources.

The first Ikonix investment in EEC.
EEC became the sole manufacturer of Battery Charges for the Taiwan military - General Headquarters of Combined Service Force.

Collaboration with Associated Research, Inc. (An Ikonix Brand) to become an ODM partner.

2001

2002

CAPABILITIES \& FEATURES

PRODUCT REFERENCE CHART

	Output Power Capability						Output Configurations		
Model	$\begin{aligned} & 500 \\ & \text { VA } \end{aligned}$	$\begin{aligned} & 1.25 \\ & \text { kVA } \end{aligned}$	$\begin{gathered} 2 \\ \mathrm{kVA} \end{gathered}$	$\begin{gathered} 3 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 4 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 6 \\ \text { kVA } \end{gathered}$	1 Phase	Split 1 Phase (2 Lines/1 Neutral)	3 Phase
430XAC				-			\bullet	-	\bullet
460XAC						-	-	-	-
8505	\bullet						-		
8512		-					\bullet		
8520			-				-		
8530				-			\bullet		
8540					\bullet		\bullet		
8560						\bullet	\bullet		

	Output Capabilities of V, Hz \& A			General Features		
Model	Voltage Output Max	Frequency Output Range	$\begin{aligned} & \text { Max A @ } \\ & \leq 110 \mathrm{~V} / 220 \mathrm{~V} \\ & \text { (per phase) } \end{aligned}$	PC Control	CE Mark	Free GUI Available
430XAC	300/600/520*	40-1000	9.2A/4.6A	\bullet	-	\bullet
460XAC	300/600/520*	40-1000	18.4A/9.2A	\bullet	-	-
8505	310	5.0-1200	5.0A/2.5A	Advanced Mode	-	Advanced Mode
8512	310	5.0-1200	12.5A/6.25A	Advanced Mode	-	Advanced Mode
8520	310	5.0-1200	20A/10A	Advanced Mode	-	Advanced Mode
8530	310	5.0-1200	30A/15A	Advanced Mode	-	Advanced Mode
8540	310	5.0-1200	40A/20A	Advanced Mode	-	Advanced Mode
8560	310	5.0-1200	60A/30A	Advanced Mode	-	Advanced Mode

[^0]$x 3=$ the number of sources required to achieve an output rating and 3 phase.
$300 / 600 / 520^{*}=300 \mathrm{~V}$ phase $1 \varnothing, 600 \mathrm{~V}$ split $1 \varnothing, 520 \mathrm{~V} 3 \varnothing$

BROWSE OUR POWER SOURCES

8500 Series

Programmable AC Power Source

The EEC 8500 Series is the most power dense and functionality rich source in EEC history, giving you improved capability, functionality, and a reduced footprint in one series. These new models provide an output voltage of up to 310 VAC and an output frequency ranging from 5 Hz $-1,200 \mathrm{~Hz}$, making it the obvious solution for all kinds of applications. Configure this power source as a simple bench top AC Power Source in Manual mode or, as an upgraded option, Advanced mode, to be used with an interface to a PC. The 8500 Series includes the following models: 8505, 8512, 8520, 8530, 8540, 8560

Features

- 14 pre-configured waveforms allow you to simulate nearly any abnormal condition on your DUT by simply selecting the waveform you would like to output.
- With expanded output voltage to 310VAC and output frequency from 5 Hz to 1200 Hz , the 8500 provides a single, simple solution to meet a wide variety of testing applications.
- Advanced mode option allows you to easily simulate voltage surges, voltage drops, voltage pulses, voltage sweeps, DC bias, and frequency sweeps to help make meeting the specific needs of your testing application easier than it has ever been.
- High power density with a reduced overall footprint offers you the flexibility you need to use your 8500 Series power source in either a bench top or rack mount application.
- Easily upgrade and keep your command set from your 6000, 7000, or 300XAC Series with the legacy program mode.

Applicable Industries

Aerospace

Laboratory

System

Appliance

Networking

Integrator

Medical

EEC Benefits

Standard

USB/RS-232 Interface
Ethernet Interface

Options

GPIB Interface

INPUT	STANDARD MODE	ADVANCED MODE
Manual Operation	-	-
PC Interface (USB/LAN standard, optional GPIB)		-
PowerTRAC Compatibility		-
Voltage, Frequency, Transient, and DC Bias Sweeps		-

Specifications - 8500

8500 SPECIFICATIONS								
MODEL			8505	8512	8520	8530	8540	8560
AC OUTPUT								
Phase			1Ø2W					
Power Rating			500VA	1250VA	2kVA	3 kVA	4kVA	6kVA
Voltage		Range	0-310V, 155/310V Auto Range					
		Resolution	0.1 V					
		Accuracy	\pm (0.2\% of setting +3 counts)				$\pm(0.2 \%$ of setting +6 counts $)$	
Max. Current (r.m.s)1		0-155V	5 A	12.5A	20A	30A	40A	60A
		O-310V	2.5A	6.25A	10A	15A	20A	30A
Frequency		Range	DC, $5-1200 \mathrm{~Hz}$ Full Range Adjust					
		Resolution	0.1 Hz at $0.0-999.9 \mathrm{~Hz}, 1 \mathrm{~Hz}$ at $1000-1200 \mathrm{~Hz}$					
		Accuracy2	$\pm 0.03 \%$ of setting($\geq 15 \mathrm{~Hz}$) , $\pm 0.3 \%$ of setting($<15 \mathrm{~Hz}$)					
Total Harmonic Distortion (THD)3			$\leq 0.3 \%$ @ 50/60Hz (Full Resistive Load)					
Crest Factor4			≥ 3	≥ 3	≥ 3	2.5	≥ 3	2.5
Inrush Current			4	4	4	3	4	3
Line Regulation			$\pm 0.1 \mathrm{~V}$					
Load Regulation5			$\pm 0.2 \mathrm{~V},<1 \mathrm{~s}$ response time					
DC OUTPUT								
Power rating			300W	750W	1200W	1800W	2400W	3600W
Voltage		Range	0-420V, 210/420V Auto Range					
		Resolution	0.1 V					
		Accuracy	$\pm(0.2 \%$ of setting +3 counts $)$			\pm (0.2\% of setting +6 counts)		
Max. Current (r.m.s)2		0-210V	3.0A	7.5A	12.0A	18.0A	24.0A	36.0 A
		0-420V	1.5A	3.75A	6.0A	9.0 A	12.0A	18.0A
Ripple	Range	L	$<700 \mathrm{mV}$				$<800 \mathrm{mV}$	
(r.m.s)6		H	$<700 \mathrm{mV}$				< 800 mV	
Ripple and Noise (p-p)6			$<6.0 \mathrm{Vp}-\mathrm{p}$				$<7.0 \mathrm{Vp}-\mathrm{p}$	
Load Regulation5			$\pm 0.2 \mathrm{~V},<1$ s response time					

Specifications - 8500

8500 SPECFICIATIONS								
MODEL			8505	8512	8520	8530	8540	8560
MEASUREMENT								
Voltage(AC)	Range		0-310V, 155/310V Auto Range					
	Resolution		0.1 V					
	Accuracy ${ }^{2}$		$\pm(0.2 \%$ of reading + 3counts) at voltage $>5 \mathrm{~V}$				$\begin{gathered} \pm(0.2 \% \text { of reading }+6 \text { counts }) \\ \text { at voltage }>5 \mathrm{~V} \end{gathered}$	
Voltage(DC)	Range		0-420V, 210/420V Auto Range					
	Resolution		0.1 V					
	Accuracy ${ }^{2}$		$\pm(0.2 \%$ of reading + 3counts) at voltage $>5 \mathrm{~V}$				$\begin{gathered} \pm(0.2 \% \text { of reading }+6 \text { counts }) \\ \text { at voltage }>5 \mathrm{~V} \end{gathered}$	
Current9	Range	L	0.050-1.200A	0.050-5.000A		-		
		Resolution	1.00-6.25A	4.00-15.62A	4.00-25.00A	0.10-37.50A	0.10-50.00A	0.10-75.00A
	Resolution 3	L	0.001 A			-		
		H	0.01A					
	Accuracy 2	L	\pm (1\% of reading +10 counts) at CF <3			-		
		H	\pm (0.5% of reading +8 counts)			\pm (0.5% of reading +12 counts $)$		
Frequency	Range		$0.0-1200 \mathrm{~Hz}$					
	Resolution		$0.1 \mathrm{~Hz} / 1 \mathrm{~Hz}$					
	Accuracy		$\pm 0.1 \mathrm{~Hz} @ 5-999.9 \mathrm{~Hz} . / \pm 1 \mathrm{~Hz}$ @ 1000-1200Hz					
Power10$(A C, D C)$	Range	L	0.0-75.0W	0.0-300.0W		-		
		H	60-625W	240-1563W	240-2500W	0-3750W	0-5000W	0-7500W
	Resolution	L	0.1 W			-		
		H	1W					
	Accuracy	L	\pm (1\% of reading +10 counts) at $\mathrm{PF} \geq 0.35$ and voltage $>5 \mathrm{~V}$	\pm (2% of reading +15 counts $)$ at $\mathrm{PF} \geq 0.35$ and voltage $>5 \mathrm{~V}$		-		
		H	\pm (1% of reading +5 counts) at PF ≥ 0.35 and voltage $>5 \mathrm{~V}$	\pm (1% of reading +10 counts) at $\mathrm{PF} \geq 0.35$ and voltage $>5 \mathrm{~V}$		\pm (1% of reading +20 counts) at $\mathrm{PF} \geq 0.35$ and voltage $>5 \mathrm{~V}$		
Power Factor	Range		0.000-1.000					
	Resolution		0.001					
	Accuracy		W/VA, Calculated and displayed to three significant digits					
Power Apparent (VA)	Range	L	0.0-75.0VA	0.0-300.0VA		-		
		H	60-625VA	240-1563VA	240-2500VA	0-3750VA	0-5000VA	0-7500VA
	Resolution	L	0.1VA			-		
		H	1VA					
	Calculated Formula		$\sqrt{\mathrm{V} \times \mathrm{A} \text {, Calculated value }}$					
Peak Current Measurement	Range		0.0-20.0Apk	0.0-50.0Apk	0.0-80.0Apk	0.0-120.0Apk	0.0-160.0Apk	0.0-240.0Apk
	Resolution		0.1A					
	Accuracy		\pm (0.5% of reading +8 counts)				\pm (0.5% of reading +12 counts $)$	
Reactive Power Measurement	Range	L	0.0-75.0VAR	0.0-300.0VAR		-		
		H	60-625VAR	240-1563VAR	240-2500VAR	0-3750VAR	0-5000VAR	0-7500VAR
	Resolution	L	0.1VAR			-		
		H	1VAR					
	Calculated Formula		$\sqrt{(V A)^{2}-(V A)^{2}}$, Calculated value					
Crest Factor Measurement	Range		0.00-10.00					
	Resolution		0.01					
	Accuracy		Ap / A					

Specifications - 8500

3 Phase AC Power Sources

With a unique feature set and competitive price point, our 400XAC Series provides $3 \varnothing$ AC power in a single box. Our exclusive SmartCONFIG feature allows you to switch from $1 \varnothing$ to $3 \varnothing$ or DC output with the push of a button. This maximizes your investment while giving you the AC power that your application needs. The 400XAC Series consists of two models: the 430XAC is a 3 kVA AC power source and the 460XAC is a 6 kVA AC power source.

Features

- Exclusive SmartCONFIG feature allows for push button switch of $1 \varnothing, 3 \varnothing$, or DC output.
- Single phase input power requirements.
- 50 built-in memory locations with 9 test steps.
- Built-in power factor correction (PFC).
- Advanced metering circuits monitor voltage, current, peak current, power, apparent power, reactive power, power factor, and crest factor.
- External voltage sensing for accurate metering.
- Transient feature simulates voltage variations, brownouts, and transient voltage conditions.
- Programmable starting and ending angle of the output sine wave.
- Rack mount handle kit included.

Applicable Industries

EEC Benefits

Standard

USB/RS-232 Interface

Options

GPIB Interface
Ethernet Interface

Specifications - 400XAC

Specifications - 400XAC

Poly-phase mode (3ø4W) for per phase measurement			430XAC	460XAC
Current (RMS)	Range	L	$0.005 \mathrm{~A} \sim 1.200 \mathrm{~A}$	$0.005 \mathrm{~A} \sim 2.400 \mathrm{~A}$
		H	1.00 A~13.00 A	2.00 A 26.00 A
	Accuracy	L	$\pm(1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ \pm (1% of reading +5 counts) at $501-1000 \mathrm{~Hz}$, $\mathrm{CF}<1.5$ and Current (peak) $\leq 3.6 \mathrm{~A}$	$\begin{aligned} & \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 40.0-500 \mathrm{~Hz} \\ & \pm(1 \% \text { of reading }+5 \text { counts) at } 501-1000 \mathrm{~Hz}, \\ & \quad \mathrm{CF}<1.5 \text { and Current (peak) } \leq 7.2 \mathrm{~A} \end{aligned}$
		H	$\begin{gathered} \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 40.0-500 \mathrm{~Hz} \\ \pm(1 \% \text { of reading }+5 \text { counts at } 501-1000 \mathrm{~Hz}, \\ \mathrm{CF}<1.5 \text { and Current (peak) } \leq 27.6 \mathrm{~A} \end{gathered}$	$\begin{gathered} \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 40.0-500 \mathrm{~Hz} \\ \pm(1 \% \text { of reading }+5 \text { counts) at } 501-1000 \mathrm{~Hz}, \\ \mathrm{CF}<1.5 \text { and Current (peak) } \leq 55.2 \mathrm{~A} \end{gathered}$
Current (peak)	Range		0.0 A ~ 38.0 A	0.0 A~76.0 A
	Accuracy		$\begin{array}{r} \pm(1 \% \text { of readin } \\ \pm(1.5 \% \text { of readin } \\ \pm(1.5 \% \text { of reading }+10 \end{array}$	$\begin{aligned} & 0-70.0 \mathrm{~Hz} \\ & .1-500 \mathrm{~Hz} \\ & 00 \mathrm{~Hz} \text { and } \mathrm{CF}<1.5 \end{aligned}$
Power	Range	L	0.0 W 120.0 W	0.0 W 240.0 W
		H	$100 \mathrm{~W} \sim 1300 \mathrm{~W}$	$200 \mathrm{~W} \sim 2600 \mathrm{~W}$
	Accuracy	L	$\begin{aligned} & \pm(2 \% \text { of reading }+15 \text { counts }) \text { at } 40.0-500 \mathrm{~Hz} \text { and PF } \geq 0.2 \\ & \pm(2 \% \text { of reading }+30 \text { counts }) \text { at } 501-1000 \mathrm{~Hz} \text { and PF } \geq 0.5 \end{aligned}$	
		H	\pm (2% of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.2$ $\pm(2 \%$ of reading +15 counts) at $501-1000 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.5$	
Power Factor	Range		0-1.000	
	Accuracy		W / VA, Calculated and displayed to three significant digits	
Power Apparent (VA)	Range	L	$0.0 \mathrm{VA} \sim 120.0 \mathrm{VA}$	$0.0 \mathrm{VA} \sim 240.0 \mathrm{VA}$
		H	100 VA~1300 VA	200 VA 2600 VA
	Accuracy		$\mathrm{V} \times \mathrm{A}$, Calculated value	
Power Reactive (Q)	Range	L	0.0 VAR $\sim \pm 120.0$ VAR	0.0 VAR $\sim \pm 240.0$ VAR
		H	0 VAR $\sim \pm 1300$ VAR	0 VAR $\sim \pm 2600$ VAR
	Accuracy		$\sqrt{(\mathrm{VA})^{2}-(\mathrm{W})^{2}}$, Calculated value	
Crest Factor	Range		$0-10.00$	
	Accuracy		Ap / A, Calculated and displayed to two significant digits	
Poly-phase mode (3Ø4W) for Σ measurement			$430 \times$ AC	460XAC
Frequency	Range		$\frac{0.0-1000.0 \mathrm{~Hz}}{}$	
	Accuracy		$\pm 0.1 \mathrm{~Hz}(501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz}$)	
Voltage	Range		$0.0-727.5 \mathrm{~V}$	
	Calculated Formula		$(\mathrm{A}+\mathrm{B}+\mathrm{C}) / \sqrt{ } 3$, Calculated and displayed to one significant digits	
Current (RMS)	Range	L	$0.005 \mathrm{~A} \sim 1.200 \mathrm{~A}$	$0.005 \mathrm{~A} \sim 2.400 \mathrm{~A}$
		H	1.00A~13.00 A	$2.00 \mathrm{~A} \sim 26.00 \mathrm{~A}$
	Calculated Formula	L H	$\frac{\sum V A}{\sum V} / \sqrt{3}$	
Power	Range	L	0.0W~360.0W	0.0W~720.0W
		H	300W 3900W	600W~7800W
	Accuracy	L	$\frac{\sum^{P}}{\sum^{V A}} \quad$ A Power + B Power + C Power, Calculated value	
		H		
Power Factor	Range		0-1.000	
	Resolution		0.001	
	Accuracy		Calculated and displayed to three significant digits	
Power Apparent (VA)	Range	L	0.0VA $\sim 360.0 \mathrm{VA}$	0.0VA~720.0VA
		H	$300 \mathrm{VA} \sim 3900 \mathrm{VA}$	600VA~7800VA
	Calculated Formula	$\begin{aligned} & \text { L } \\ & \hline H \end{aligned}$	$\sqrt{\left(\sum^{W}\right)^{2}+\left(\sum^{Q}\right)^{2}}$	
Power Reactive (Q)	Range	L	0.0VAR~360.0VAR	0.0VAR~720.0VAR
		H	300VAR 3900VAR	600VAR~7800VAR
	Accuracy	L	A VAR + B VAR + C VAR, Calculated value	
		H		
Single-phase mode (1б2W) Setting			430XAC	460XAC
Voltage	Range		$5.0 \sim 300 \mathrm{VAC}, 150 / 300 \mathrm{~V}$ Auto Range	
	Resolution		0.1 V	
	Accuracy		$\pm(0.2 \%$ of setting +3 counts)	

Specifications - 400XAC

Single-phase mode (1ø2W) Setting			430XAC	460XAC
Frequency	Range		$40 \sim 1000 \mathrm{~Hz}$ Full Range Adjust	
	Resolution		0.1 Hz at $40.0 \sim 99.9 \mathrm{~Hz}, 1 \mathrm{~Hz}$ at $100 \sim 1000 \mathrm{~Hz}$	
	Accuracy		$\pm 0.03 \%$ of setting	
Starting \& Ending Phase Angle	Range		0~359 ${ }^{\circ}$	
	Resolution		$1{ }^{\circ}$	
	Accuracy		$\pm 1^{\circ}(45 \sim 65 \mathrm{HZ})$	
Current Hi Limit	5V 150V		0.01~27.60 A	0.01~55.20 A
	5V 300V		$0.01 \sim 13.80 \mathrm{~A}$	$0.01 \sim 27.60 \mathrm{~A}$
	Accuracy		\pm (2.0% of setting +2 counts)	
OC Fold Back Response Time			<1.4 s	
Single-phase mode (162W) measurement			430XAC	460XAC
Frequency	Range		$0.0 \sim 1000 \mathrm{~Hz}$	
	Accuracy		$\pm 0.1 \mathrm{~Hz}(501 \sim 1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz})$	
Voltage	Range		$0.0 \sim 420.0 \mathrm{~V}$	
	Accuracy		\pm (0.2\% of reading +3 counts)	
Current (RMS)	Range		0.05 A $\sim 39.00 \mathrm{~A}$	0.05 A~78.00
	Accuracy		$\begin{aligned} & \pm(1 \% \text { of reading }+5 \text { counts) at } 40.0 \sim 500 \mathrm{~Hz} \\ & \pm(1 \% \text { of reading }+5 \text { counts) at } 501 \sim 1000 \mathrm{~Hz}, \\ & \quad \mathrm{CF}<1.5 \text { and Current (peak) } \leq 82.8 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm(1 \% \text { of reading }+5 \text { counts) at } 40.0 \sim 500 \mathrm{~Hz} \\ & \pm(1 \% \text { of reading }+5 \text { counts) at } 501 \sim 1000 \mathrm{~Hz}, \\ & C F<1.5 \text { and Current (peak) } \leq 165.6 \mathrm{~A} \end{aligned}$
Current (peak)	Range		0.0 A~114.0 A	0.0 A~228.0 A
	Accuracy		$\begin{gathered} \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 40.0 \sim 70.0 \mathrm{~Hz} \\ \pm(1.5 \% \text { of reading }+10 \text { counts }) \text { at } 70.1 \sim 500 \mathrm{~Hz} \\ \pm(1.5 \% \text { of reading }+10 \text { counts }) \text { at } 501 \sim 1000 \mathrm{~Hz} \text { and } \mathrm{CF}<1.5 \end{gathered}$	
Power	Range		O W $\sim 3900 \mathrm{~W}$	0 W $\sim 7800 \mathrm{~W}$
	Accuracy		$\pm(2 \%$ of reading +5 counts $)$ at $40.0 \sim 500 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.2$ \pm (2% of reading +15 counts) at $501 \sim 1000 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.5$	
Power Factor	Range		0-1.000	
	Accuracy		W / VA, Calculated and displayed to three significant digits	
Power Apparent	Range		$0 \mathrm{VA} \sim 3900 \mathrm{VA}$	$0 \mathrm{VA} \sim 7800 \mathrm{VA}$
	Accuracy		V $\times \mathrm{A}$, Calculated value	
Power Reactive (Q)	Range		0 VAR~3900 VAR	0 VAR~7800 VAR
	Accuracy		$\sqrt{(\text { VA })^{2}-(\mathrm{W})^{2}}$, Calculated value	
Crest Factor	Range		0-10.00	
	Accuracy		Ap / A, Calculated and displayed to two significant digits	
Poly-phase mode (1б3W) for per phase output setting			430XAC	460XAC
Voltage	Range		5.0 300 VAC (phase), 10.0 600 VAC (line), 150/300 V Auto Range	
	Accuracy		\pm (0.2% of setting +3 counts)	
Frequency	Range		$40 \sim 1000 \mathrm{~Hz}$ Full Range Adjust	
	Accuracy		$\pm 0.03 \%$ of setting	
Starting \& Ending Phase Angle	Range		0~359 ${ }^{\circ}$	
	Accuracy		$\pm 1^{\circ}(45 \sim 65 \mathrm{HZ})$	
Current RI Limit	5 V ~150V		0.01~9.20 A	$0.01 \sim 18.40 \mathrm{~A}$
	5V 300V		$0.01 \sim 4.60 \mathrm{~A}$	0.01~9.20 A
	Accuracy		$\pm(2.0 \%$ of setting +2 counts)	
OC Fold Back Response Time			<1.4 s	
Poly-phase mode (103W) for per phase measurement			430XAC	460XAC
Frequency	Range		$0.0-1000 \mathrm{~Hz}$	
	Accuracy		$\pm 0.1 \mathrm{~Hz}$ ($501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz}$)	
Voltage	Range		0.0-420.0 V	
	Accuracy		\pm (0.2% of reading +3 counts)	
Current (RMS)	Range	L	0.005 A~1.200 A	0.005 A 2.400 A
		H	$1.00 \mathrm{~A} \sim 13.00 \mathrm{~A}$	2.00 A $\sim 26.00 \mathrm{~A}$
	Accuracy	L	$\pm(1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ $\pm(1 \%$ of reading +5 counts) at $501-1000 \mathrm{~Hz}$, CF <1.5 and Current (peak) $\leq 3.6 \mathrm{~A}$	$\pm(1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ \pm (1% of reading +5 counts) at $501-1000 \mathrm{~Hz}$, CF <1.5 and Current (peak) $\leq 7.2 \mathrm{~A}$
		H	$\pm(1 \%$ of reading +5 counts $)$ at $40.0-500 \mathrm{~Hz}$ $\pm(1 \%$ of reading +5 counts) at $501-1000 \mathrm{~Hz}$, CF <1.5 and Current (peak) $\leq 27.6 \mathrm{~A}$	$\pm(1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ $\pm(1 \%$ of reading +5 counts) at $501-1000 \mathrm{~Hz}$, CF <1.5 and Current (peak) $\leq 55.2 \mathrm{~A}$

Specifications - 400XAC

Specifications - 400XAC

DC MEASUREMENT		430XAC	460XAC
Voltage	Range	0.0-420.0 V	
	Accuracy	\pm (0.2% of setting +5 counts)	
Current	Range	0.05 A~19.50 A	0.05 A~39.00 A
	Accuracy	\pm (1% of reading +5 counts)	
Power	Range	$0 \mathrm{~W} \sim 3900 \mathrm{~W}$	0 W~7800 W
	Accuracy	\pm (2% of reading +5 counts)	
PROTECTION			
Software OCP		Over Current 110\% of full rated current >1 second	
Output Short Shut Down Speed		<1 second	
Software OPP		When over Power $105 \sim 110 \%$ of full power >5 second. When over Power $>110 \%$ of full power <1 second.	
Software OTP		Temperature over 95 degree C on the power amp and PFC heatsink	Temperature over 120 degree C on the power amp and PFC heatsink
Software OVP	L	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +5 V When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +15 V When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +20 V	
	H	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +10 V When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +30 V When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +40 V	
Software LVP	L	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-5 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-15 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-20 \mathrm{~V}>0.5$ second	
	H	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-10 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-30 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-40 \mathrm{~V}>0.5$ second	
Reverse Current Protection (RCP)		Over 75W	
GENERAL			
Transient (only for 40~70 Hz)		Trans-Volt 0.0-300.0 V Resolution 0.1 V Trans-Site $0^{\circ} \sim 359^{\circ}$ Resolution 1° Trans-Time 0.5-999.9 mS Resolution 0.1 mS Trans-Cycle 0-9999, 0-Constant	
Operation Key Feature		Soft key, Numeric key, Rotary Knob	
Remote Input Signal		Test, Reset, Interlock, Recall program memory 1 through 7	
Remote Output Signal		Pass, Fail, Test-in Process	
Key Lock		Yes, Password Driven	
Memory		50 memories, 9 steps/memory	
Ext Trigger		START / END / BOTH / OFF in the Program mode, Output Signal 5 V, BNC type	
Alarm Volume Setting		Range: 0-9;0 = OFF, 1 is softest volume, 9 is loudest volume.	
Graphic Display		240×64 dot resolution Monographic LCD/Contrast 9 Levels 1-9	
PFC		PF ≥ 0.97 at Full load	
Efficiency		$\geq 78 \%$ (at Full load)	
Auto Loop cycle		0 = Continuous, OFF, 2~9999	
Over Current Fold Back		On/Off, Setting On when output current over setting Hi-A value it will fold back output voltage to keep constant output current is setting Hi -A value, Response time $<1400 \mathrm{~ms}$	
Safety Agency		CE Listed	
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$430 \times 400.5 \times 500 \mathrm{~mm}$	
		$16.93 \times 15.77 \times 19.69$ in	
Net Weight		$105.8 \mathrm{lbs}(48 \mathrm{~kg}$)	$125.6 \mathrm{lbs}(57 \mathrm{~kg}$)
Operation Environment		0-40\% $/ 20-80 \% \mathrm{RH}$	

HEADQUARTERS

28105 N. Keith Drive
Lake Forest, IL 60045 USA
Telephone +1-847-367-4077
Fax +1-847-367-4080
Email info@ikonixusa.com
www.ikonixusa.com

Ikonix Taiwan

16F-2., No.237, Sec. 1, Datong Rd.,
Xizhi Dist., New Taipei City 221, Taiwan
Telephone +886-2-21653066
Fax +886-2-21653077
Email contact@ikonixasia.com
www.ikonixasia.com

Ikonix Asia

Unit D3-5-2 (2ND Floor) Block D3, Dana 1 Commercial Centre, Jalan PJU 1A/46, 47301 Petaling Jaya, Selangor, Malaysia
Telephone +60-3-78429168
Fax +60-3-78426168
Email contact@ikonixasia.com www.ikonixasia.com

Cal Power

Via Acquanera, 29 tel. 031.526 .566 (r.a.) info@calpower.it 22100 COMO fax 031.507.984 www.calpower.it

[^0]: $x 2=$ the number of sources required to achieve an output rating.

